[1] 陈进. 长江自然湿地水循环特点及功能[J]. 长江流域资源与环境,2022,31(8):1705-1711. [2] Yang YZ, Wu QB, Hou YD, et al.Using stable isotopes to illuminate thermokarst lake hydrology in permafrost regions on the Qinghai-Tibet plateau, China[J]. Ermafrost Periglac, 2019, 30(1): 58-71. [3] Schippers P, Van De Weerd H, De Klein J, et al. Impacts of agricultural phosphorus use in catchments on shallow lake water quality: About buffers, time delays and equilibria[J]. Sci Total Environ, 2006, 369(1-3): 280-294. [4] Lévesque D, Pinel-Alloul B, Méthot G, et al.Effects of climate, limnological features and watershed clearcut logging on long-term variation in zooplankton communities of Boreal Shield lakes[J]. Water, 2017, 9(10):377. [5] Ma TL, Jiang YM, Elbehery AHA, et al.Resilience of planktonic bacterial community structure in response to short-term weather deterioration during the growing season in an alpine lake[J]. Hydrobiologia, 2020, 847(2): 535-548. [6] Culligan EP, Sleator RD, Marchesi JR, et al.Metagenomics and novel gene discovery Promise and potential for novel therapeutics[J]. Virulence, 2014, 5(3): 399-412. [7] Xiao FN, Li YY, Li GF, et al.High throughput sequencing-based analysis of the soil bacterial community structure and functions of Tamarix shrubs in the lower reaches of the Tarim River[J]. Peerj, 2021, 9. [8] Nurul ANA, Muhammad DD, Okomoda VT, et al.16S rRNA-Based metagenomic analysis of microbial communities associated with wild labroides dimidiatus from Karah Island, Terengganu, Malaysia[J]. Biotechnology Reports, 2019, 21: e00303. [9] 魏士凯,范顺祥,张玉珍,等. 塞罕坝自然保护区主要植被类型动态及其驱动力[J]. 2018, 29(4):1170-1178. [10] Peng SM, Liu W, Xu G, et al.A meta-analysis of soil microbial and physicochemical properties following native forest conversion[J]. Catena, 2021, 204. [11] Yang YR, Lee SH, Jang I, et al.Soil bacterial community structures across biomes in artificial ecosystems[J]. Ecological Engineering, 2020, 158. [12] Doyle JJ, Doyle JL.A rapid DNA isolation procedure for small quantities of fresh leaf tissue[J]. Phytochemical bulletin, 1987, 19. [13] Callahan BJ, Mcmurdie PJ, Rosen MJ, et al.DADA2: High-resolution sample inference from Illumina amplicon data[J]. Nature methods, 2016, 13(7): 581-583. [14] Bokulich NA, Kaehler BD, Rideout JR, et al.Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin[J]. Microbiome, 2018, 6(1): 1-17. [15] 王丽艳,李虹茹,黄文超,等. 不同密度对杉木林根际土壤丛枝菌根真菌群落结构及共生格局的影响特征[J]. 中南林业科技大学学报,2023,43(11):151-162. [16] 刘艳娇,刘庆,贺合亮,等. 亚高山粗枝云杉人工林土壤原核微生物群落结构与功能变化[J]. 应用生态学报,2023,34(12):3279-3290. [17] Yan Q, Deng J, Wang F, et al.Community assembly and co-occurrence patterns underlying the core and satellite bacterial sub-communities in the Tibetan lakes[J]. Front Microbiol, 2021, 12: 695465. [18] Tóth E, Toumi M, Farkas R, et al.Insight into the hidden bacterial diversity of lake balaton, hungary[J]. Biologia Futura, 2020, 71(4): 383-391. [19] 周建波,郝敏,侯建华. 塞罕坝国家级自然保护区植被类型研究[J]. 河北林果研究,2015,30(4):354-359. [20] Feng LJ, Zhang ZL, Yang GF, et al.Microbial communities and sediment nitrogen cycle in a coastal eutrophic lake with salinity and nutrients shifted by seawater intrusion[J]. Environmental Research, 2023, 225: 115590. [21] Bukowska A, Kalinski T, Chróst RJ.Degradation of microcystins by water and bottom sediment bacterial communities from a eutrophic freshwater lake[J]. Aquatic Microbial Ecology, 2019, 82(2): 129-144. [22] Deng Y, Yan Y, Wu YT, et al.Response of aquatic plant decomposition to invasive algal organic matter mediated by the co-metabolism effect in eutrophic lakes[J]. J Environ Manage, 2023, 329: 117037. [23] Kappelmann L, Krüger K, Hehemann JH, et al.Polysaccharide utilization loci of north sea flavobacteriia as basis for using SusC/D-protein expression for predicting major phytoplankton glycans[J]. Isme Journal, 2019, 13(1): 76-91. [24] 文新宇,张虎才,常凤琴,等. 泸沽湖水体垂直断面季节性分层[J]. 地球科学进展,2016,31(8):858-869. [25] 赵卓丽,李冰,蒋宏忱. 南极冰下水生态系统微生物与生源元素循环研究进展[J]. 微生物学报,2022,62(6):2165-2187. |