[1] Dwivedi S, Sikarwar MS.Diabetic Nephropathy: Pathogenesis, Mechanisms, and Therapeutic Strategies[J]. Horm Metab Res, 2025, 57(1): 7-17. [2] Sun T, Guo Y, Su Y, et al.Molecular mechanisms of diabetic nephropathy: A narrative review[J]. Cell Biol Int, 2024, 48(9): 1240-1253. [3] Luo Y, Zhang W, Qin G.Metabolomics in diabetic nephropathy: Unveiling novel biomarkers for diagnosis (Review)[J]. Mol Med Rep, 2024, 30(3): 156-168. [4] Zhao DM, Zhong R, Wang XT, et al.Mitochondrial dysfunction in diabetic nephropathy: insights and therapeutic avenues from traditional Chinese medicine[J]. Front Endocrinol (Lausanne), 2024, 15(7): 1429420. [5] Kaushik M, Kaushik A, Chaudhary J, et al.Terpenoids in Diabetic Nephropathy: Advances and Therapeutic Opportunities[J]. Endocr Metab Immune Disord Drug Targets, 2024, 24(1): 13-30. [6] Li X, Zhang Y, Xing X, et al.Podocyte injury of diabetic nephropathy: Novel mechanism discovery and therapeutic prospects[J]. Biomed Pharmacother, 2023, 168(12): 115670. [7] Tung CW, Hsu YC, Shih YH, et al.Glomerular mesangial cell and podocyte injuries in diabetic nephropathy[J]. Nephrology (Carlton), 2018, 23(4): 32-37. [8] Hu S, Hang X, Wei Y, et al.Crosstalk among podocytes, glomerular endothelial cells and mesangial cells in diabetic kidney disease: an updated review[J]. Cell Commun Signal, 2024, 22(1): 136-154. [9] Naaman SC, Bakris GL.Diabetic Nephropathy: Update on Pillars of Therapy Slowing Progression[J]. Diabetes Care, 2023, 46(9): 1574-1586. [10] Hu Q, Jiang L, Yan Q, et al.A natural products solution to diabetic nephropathy therapy[J]. Pharmacol Ther, 2023, 241(1): 108314. [11] Tsai YC, Kuo MC, Hung WW, et al.Proximal tubule-derived exosomes contribute to mesangial cell injury in diabetic nephropathy via miR-92a-1-5p transfer[J]. Cell Commun Signal, 2023, 21(1): 10-23. [12] Fang Z, Lee K, He JC.A central role for mesangial cells in the initiation of diabetic nephropathy[J]. Kidney Int, 2023, 104(5): 872-874. [13] Deng L, Wu Z, Sun C, et al.Transcriptome analysis revealed SMURF2 as a prognostic biomarker for oral cancer[J]. J Appl Genet, 2025, 66(1): 155-170. [14] Ren J, Yu L, Zhang Q, et al.AIMP2 restricts EV71 replication by recruiting SMURF2 to promote the degradation of 3D polymerase[J]. Virol Sin, 2024, 39(4): 632-644. [15] Zhang W, Dai J, Hou G, et al.SMURF2 predisposes cancer cell toward ferroptosis in GPX4-independent manners by promoting GSTP1 degradation[J]. Mol Cell, 2023, 83(23): 4352-4369. [16] Jeon S, Jin H, Kim JM, et al.The miR-15b-Smurf2-HSP27 axis promotes pulmonary fibrosis[J]. J Biomed Sci, 2023, 30(1): 2-14. [17] Guan G, Xie J, Dai Y, et al.TFPI2 suppresses the interaction of TGF-β2 pathway regulators to promote endothelial-mesenchymal transition in diabetic nephropathy[J]. J Biol Chem, 2022, 298(3): 101725. [18] Kim D, Nam GY, Seo E, et al.Inhibition of ChREBP ubiquitination via the ROS/Akt-dependent downregulation of Smurf2 contributes to lysophosphatidic acid-induced fibrosis in renal mesangial cells[J]. J Biomed Sci, 2022, 29(1): 31-49. [19] Ge X, Xi L, Wang Q, et al.Circular RNA Circ_0000064 promotes the proliferation and fibrosis of mesangial cells via miR-143 in diabetic nephropathy[J]. Gene, 2020, 758(10): 144952. [20] Chen J, Ou Z, Gao T, et al.Ginkgolide B alleviates oxidative stress and ferroptosis by inhibiting GPX4 ubiquitination to improve diabetic nephropathy[J]. Biomed Pharmacother, 2022, 156(12): 113953. [21] Li Y, Ren D, Shen Y, et al.Altered DNA methylation of TRIM13 in diabetic nephropathy suppresses mesangial collagen synthesis by promoting ubiquitination of CHOP[J]. EBioMedicine, 2020, 51(1): 102582. [22] Xu Z, Diao Z, Liu R, et al.Molecular mechanism of smurf2 in regulating the expression of SnoN in diabetic nephropathy[J]. Mol Med Rep, 2017, 15(5): 2560-2566. [23] Alderman C, Krueger A, Rossi J, et al.In Vitro Phosphatase Assays for the Eya2 Tyrosine Phosphatase[J]. Methods Mol Biol, 2024, (2743): 285-300. [24] Wolin AR, Vincent MY, Hotz T, et al.EYA2 tyrosine phosphatase inhibition reduces MYC and prevents medulloblastoma progression[J]. Neuro Oncol, 2023, 25(12): 2287-2301. [25] Awwad SW, Darawshe MM, Machour FE, et al.Recruitment of RBM6 to DNA Double-Strand Breaks Fosters Homologous Recombination Repair[J]. Mol Cell Biol, 2023, 43(3): 130-142. [26] Li Z, Qiu R, Qiu X, et al.EYA2 promotes lung cancer cell proliferation by downregulating the expression of PTEN[J]. Oncotarget, 2017, 8(67): 110837-110848. [27] Xu H, Jiao Y, Yi M, et al.EYA2 Correlates With Clinico-Pathological Features of Breast Cancer, Promotes Tumor Proliferation, and Predicts Poor Survival[J]. Front Oncol, 2019, 9(1): 26-38. |