[1] Romanelli G, Villarreal L, Espasandín C, et al.Diabetes induces modifications in costameric proteins and increases cardiomyocyte stiffness[J]. Am J Physiol Cell Physiol, 2024, 327(5): C1263-C1273. [2] Saeedi P, Petersohn I, Salpea P, et al.Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition[J]. Diabetes Res Clin Pr, 2019, 157: 107843. [3] Rubler S, Dlugash J, Yuceoglu YZ, et al.New type of cardiomyopathy associated with diabetic glomerulosclerosis[J]. AM J Cardiol, 1972, 30(6): 595-602. [4] Ren J, Bode AM.Altered cardiac excitation-contraction coupling in ventricular myocytes from spontaneously diabetic BB rats[J]. Am J Physiol Heart Circ Physiol, 2000, 279(1): H238-244. [5] Faria A, Persaud SJ.Cardiac oxidative stress in diabetes: Mechanisms and therapeutic potential[J]. Pharmacol Therapeut, 2017, 172: 50-62. [6] Du H, Zhao Y, Yin Z, et al.The role of miR-320 in glucose and lipid metabolism disorder-associated diseases[J]. Int J Biol Sci, 2021, 17(2): 402-416. [7] Kuwabara Y, Horie T, Baba O, et al.MicroRNA-451 exacerbates lipotoxicity in cardiac myocytes and high-fat diet-induced cardiac hypertrophy in mice through suppression of the LKB1/AMPK pathway[J]. Circ Res, 2015, 116(2): 279-288. [8] Burgos-Morón E, Abad-Jiménez Z, Martínez de Marañón A, et al. Relationship between Oxidative Stress, ER Stress, and Inflammation in Type 2 Diabetes: The Battle Continues[J]. J Clin Med, 2019, 8(9): 1385. [9] Zhang X, Pan L, Yang K, et al.H3 Relaxin Protects Against Myocardial Injury in Experimental Diabetic Cardiomyopathy by Inhibiting Myocardial Apoptosis, Fibrosis and Inflammation[J]. Cell Physiol Biochem, 2017, 43(4): 1311-1324. [10] Wang T, Li N, Yuan L, et al.MALAT1/miR-185-5p mediated high glucose-induced oxidative stress, mitochondrial injury and cardiomyocyte apoptosis via the RhoA/ROCK pathway[J]. J Cell Mol Med, 2023, 27(17): 2495-2506. [11] Magenta A, Greco S, Gaetano C, et al.Oxidative stress and microRNAs in vascular diseases[J]. Int J Mol Sci, 2013, 14(9): 17319-17346. [12] Yu M, Sun Y, Shan X, et al.Therapeutic overexpression of miR-92a-2-5p ameliorated cardiomyocyte oxidative stress injury in the development of diabetic cardiomyopathy[J]. Cell Mol Biol Lett, 2022, 27(1): 85. [13] Lu J, Zhang J, Wang X, et al.Dl-3-n-butylphthalide promotes microglial phagocytosis and inhibits microglial inflammation via regulating AGE-RAGE pathway in APP/PS1 mice[J]. Brain Res Bull, 2024, (212): 110969. [14] Lin KH, Ng SC, Lu SY, et al.Diallyl trisulfide (DATS) protects cardiac cells against advanced glycation end-product-induced apoptosis by enhancing FoxO3A-dependent upregulation of miRNA-210[J]. J Nutr Biochem, 2024, (125): 109567. [15] Lin K, Ng S, Paul CR, et al.MicroRNA-210 repression facilitates advanced glycation end-product (AGE)-induced cardiac mitochondrial dysfunction and apoptosis via JNK activation[J]. J Cell Biochem, 2021, 122(12): 1873-1885. [16] Liu G, Yan D, Yang L, et al.The effect of miR-471-3p on macrophage polarization in the development of diabetic cardiomyopathy[J]. Life Sci, 2021, (268): 118989. [17] Kuwahara F, Kai H, Tokuda K, et al.Hypertensive myocardial fibrosis and diastolic dysfunction: another model of inflammation?[J]. Hypertension, 2004, 43(4): 739-745. [18] Xu D, Zhang X, Chen X, et al.Inhibition of miR-223 attenuates the NLRP3 inflammasome activation, fibrosis, and apoptosis in diabetic cardiomyopathy[J]. Life Sci, 2020, (256): 117980. [19] Zhao SF, Ye YX, Xu JD, et al.Long non-coding RNA KCNQ1OT1 increases the expression of PDCD4 by targeting miR-181a-5p, contributing to cardiomyocyte apoptosis in diabetic cardiomyopathy[J]. Acta Diabetol, 2021, 58(9): 1251-1267. [20] Yang L, Cheng CF, Li ZF, et al.Berberine blocks inflammasome activation and alleviates diabetic cardiomyopathy via the miR18a3p/Gsdmd pathway[J]. Int J Mol Cell Med, 2023, 51(6): 49. [21] Liu X, Guo B, Zhang W, et al.MiR-20a-5p overexpression prevented diabetic cardiomyopathy via inhibition of cardiomyocyte apoptosis, hypertrophy, fibrosis and JNK/NF-κB signalling pathway[J]. J Biochem, 2021, 170(3): 349-362. [22] Athithan L, Gulsin G S, McCann G P, et al. Diabetic cardiomyopathy: Pathophysiology, theories and evidence to date[J]. World J Diabetes, 2019, 10(10): 490-510. [23] Wang K, Lin Y, Shen H, et al.LncRNA TUG1 Exacerbates Myocardial Fibrosis in Diabetic Cardiomyopathy by Modulating the microRNA-145a-5p/Cfl2 Axis[J]. J Cardiovasc Pharm, 2023, 81(3): 192-202. [24] Wang K, Lin Y, Shen H, et al.LncRNA TUG1 Exacerbates Myocardial Fibrosis in Diabetic Cardiomyopathy by Modulating the microRNA-145a-5p/Cfl2 Axis[J]. J Cardiovasc Pharm, 2023, 81(3): 192-202. [25] Yang XX, Zhao ZY. miR-30a-5p inhibits the proliferation and collagen formation of cardiac fibroblasts in diabetic cardiomyopathy[J]. Can J Physiol Pharm, 2022, 100(2): 167-175. [26] Ding H, Yao J, Xie H, et al.MicroRNA-195-5p Downregulation Inhibits Endothelial Mesenchymal Transition and Myocardial Fibrosis in Diabetic Cardiomyopathy by Targeting Smad7 and Inhibiting Transforming Growth Factor Beta 1-Smads-Snail Pathway[J]. Front Physiol, 2021, (12): 709123. [27] Zhang XL, Zhang G, Bai ZH. miR-34a attenuates myocardial fibrosis in diabetic cardiomyopathy mice via targeting Pin-1[J]. Cell Biol Int, 2021, 45(3): 642-653. [28] Bei Y, Lu D, Bär C, et al.miR-486 attenuates cardiac ischemia/reperfusion injury and mediates the beneficial effect of exercise for myocardial protection[J]. Mol Ther, 2022, 30(4): 1675-1691. [29] Xing R, Liu D, Cheng X, et al.MiR-207 inhibits autophagy and promotes apoptosis of cardiomyocytes by directly targeting LAMP2 in type 2 diabetic cardiomyopathy[J]. Biochem Bioph Res Co, 2019, 520(1): 27-34. [30] Ning S, Zhang S, Guo Z.MicroRNA-494 regulates high glucose-induced cardiomyocyte apoptosis and autophagy by PI3K/AKT/mTOR signalling pathway[J]. ESC Heart Fail, 2023, 10(2): 1401-1411. [31] You P, Chen H, Han W, et al.miR-200a-3p overexpression alleviates diabetic cardiomyopathy injury in mice by regulating autophagy through the FOXO3/Mst1/Sirt3/AMPK axis[J]. Peer J, 2023, (11): e15840. |