[1] Bray F, Laversanne M, Sung H, et al.Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3): 229-263. [2] 郭兰伟,张兴龙,蔡林,等. 全球结直肠癌流行和防控现状[J]. 中华肿瘤杂志,2024,46(1):57-65. [3] 国家卫生健康委员会医政司,中华医学会肿瘤学分会. 国家卫生健康委员会中国结直肠癌诊疗规范(2023版)[J]. 中国实用外科杂志, 2023, 43(6):602-630. [4] Zhang Y, Bi J, Huang J, et al.Exosome: A Review of Its Classification, Isolation Techniques, Storage, Diagnostic and Targeted Therapy Applications[J]. Int J Nanomedicine, 2020, 15: 6917-6934. [5] Djermane R, Nieto C, Vega MA, et al.Antibody-Loaded Nanoplatforms for Colorectal Cancer Diagnosis and Treatment: An Update[J]. Pharmaceutics, 2023, 15(5): 1514. [6] Liang C, Yang JB, Lin XY, et al.Recent advances in the diagnostic and therapeutic roles of microRNAs in colorectal cancer progression and metastasis[J]. Front Oncol, 2022, 12: 911856. [7] Rahmati S, Moeinafshar A, Rezaei N.The multifaceted role of extracellular vesicles (EVs) in colorectal cancer: metastasis, immune suppression, therapy resistance, and autophagy crosstalk[J]. J Cransl Med, 2024, 22(1): 452. [8] Lampropoulou DI, Pliakou E, Aravantinos G, et al.The Role of Exosomal Non-Coding RNAs in Colorectal Cancer Drug Resistance[J]. Int J Mol Sci, 2022, 23(3): 1473. [9] Bakhsh T, Alhazmi S, Alburae NA, et al.Exosomal miRNAs as a Promising Source of Biomarkers in Colorectal Cancer Progression[J]. Int J Mol Sci, 2022, 23(9): 4855. [10] Hu S, Zhang C, Ma Q, et al.Unveiling the multifaceted roles of microRNAs in extracellular vesicles derived from mesenchymal stem cells: implications in tumor progression and therapeutic interventions[J]. Front Pharmacol, 2024, 15: 1438177. [11] Lenart M, Siemińska I, Szatanek R, et al.Identification of miRNAs Present in Cell- and Plasma-Derived Extracellular Vesicles-Possible Biomarkers of Colorectal Cancer[J]. Cancers, 2024, 16(13): 2464. [12] Shi YJ, Fang YX, Tian TG, et al.Discovery of extracellular vesicle-delivered miR-185-5p in the plasma of patients as an indicator for advanced adenoma and colorectal cancer[J]. J Transl Med, 2023, 21(1): 421. [13] Jin Y, Sun L, Chen Y, et al.The homologous tumorderived exosomes loaded with miR 1270 selectively enhanced the suppression effect for colorectal cancer cells[J]. Cancer Med, 2024, 13(1): e6936. [14] Pang Y, Chen X, Xu B, et al.Engineered multitargeting exosomes carrying miR-323a-3p for CRC therapy[J]. Int J Biol Macromol, 2023, 247: 125794. [15] Pavitra E, Dariya B, Srivani G, et al.Engineered nanoparticles for imaging and drug delivery in colorectal cancer[J]. Semin Cancer Biol, 2021, 69: 293-306. [16] Zhang J, Ali K, Wang J.Research Advances of Lipid Nanoparticles in the Treatment of Colorectal Cancer[J]. Int J Nanomedicine, 2024, 19: 6693-6715. [17] Dykman L, Khlebtsov B, Khlebtsov N.Drug delivery using gold nanoparticles[J]. Adv Drug Deliv Rev, 2025, 216: 115481. [18] Yu S, Rejinold NS, Choi G, et al.Revolutionizing healthcare: inorganic medicinal nanoarchitectonics for advanced theranostics[J]. Nanoscale Horiz, 2025, 10(3): 460-483. [19] Choudhury H, Pandey M, Saravanan V, et al.Recent progress of targeted nanocarriers in diagnostic, therapeutic, and theranostic applications in colorectal cancer[J]. Biomat Adv, 2023, 153: 213556. [20] Xu J, Zhang G, Luo X, et al.Co-delivery of 5-fluorouracil and miRNA-34a mimics by host-guest self-assembly nanocarriers for efficacious targeted therapy in colorectal cancer patient-derived tumor xenografts: Erratum[J]. Theranostics, 2022, 12(14): 6159. [21] Abrishami A, Bahrami AR, Saljooghi AS, et al.Enhanced theranostic efficacy of epirubicin-loaded SPION@MSN through co-delivery of an anti-miR-21-expressing plasmid and ZIF-8 hybridization to target colon adenocarcinoma[J]. Nanoscale, 2024, 16(12): 6215-6240. [22] Kimiz-Gebologlu I, Oncel SS.Exosomes: Large-scale production, isolation, drug loading efficiency, and biodistribution and uptake[J]. J Control Release, 2022, 347: 533-543. [23] Negahdary M, Mabbott S.Automated synthesis and processing of functional nanomaterials: Advances and perspectives[J]. Coord Chem Rev, 2025, 523: 216249. [24] Zuglianello C, França AP, de Souza BS, et al. Intranasal administration of dextran-pramlintide polyelectrolyte complex-coated nanoemulsions improves cognitive impairments in a mouse model of Alzheimer’s disease[J]. Int J Biol Macromol, 2024, 281(Pt 1): 136158. [25] Jahangiri B, Khalaj-Kondori M, Asadollahi E, et al.MSC-Derived exosomes suppress colorectal cancer cell proliferation and metastasis via miR-100/mTOR/miR-143 pathway[J]. Int J Pharm, 2022, 627: 122214. [26] Chen J, Li Z, Yue C, et al.Human umbilical cord mesenchymal stem cell-derived exosomes carrying miR-1827 downregulate SUCNR1 to inhibit macrophage M2 polarization and prevent colorectal liver metastasis[J]. Apoptosis, 2023, 28(3): 549-565. [27] Zhang M, Lu X, Luo L, et al.Targeting glutamine synthetase with AS1411-modified exosome-liposome hybrid nanoparticles for inhibition of choroidal neovascularization[J]. J Nanobiotechnology, 2024, 22(1): 703. [28] Sun Z, Li J, Tong Y, et al.Ratiometric Fluorescence Detection of Colorectal Cancer-Associated Exosomal miR-92a-3p with DSN-Assisted Signal Amplification by a MWCNTs@Au NCs Nanoplatform[J]. Biosensors, 2022, 12(7): 533. [29] Tomsen-Melero J, Moltó-Abad M, Merlo-Mas J, et al. Targeted nanoliposomes to improve enzyme replacement therapy of Fabry disease[J]. Sci Adv, 2024, 10(50): eadq4738. [30] Terlinden A, Jacquet S, Manivong S, et al.Double-blinded, randomized tolerance study of a biologically enhanced Nanogel with endothelin-1 and bradykinin receptor antagonist peptides via intra-articular injection for osteoarthritis treatment in horses[J]. BMC Vet Res, 2024, 20(1): 547. [31] Li T, Tang J, Li C, et al.Evaluating the efficacy and safety of polyglycolic acid-loading mitomycin nanoparticles in inhibiting the scar proliferation after glaucoma filtering surgery[J]. Ann Med, 2024, 57(1): 2436458. [32] Thiruchenthooran V, Świtalska M, Maciejewska G, et al.Multifunctional Indomethacin Conjugates for the Development of Nanosystems Targeting Cancer Treatment[J]. Int J Nanomedicine, 2024, 19: 12695. |