ISSN 1004-6879

CN 13-1154/R

 

Journal of Chengde Medical University ›› 2023, Vol. 40 ›› Issue (1): 5-7.

Previous Articles     Next Articles

Analysis on the Anti-inflammatory Mechanism of Loranthus Parasiticus Based on Network Pharmacology and Molecular Docking Technology

XIONG Hui1, LI Zhe1, YU Yong-zhou2, HONG Xia1, LI Na2   

  1. 1. Hebei Key Laboratory of Study and Exploitation of Chinese Medicine, Chengde Medical University, Chengde, Hebei, 067000, China;
    2. Hebei Key Laboratory of Nerve Injury and Repair, Chengde Medical University, Chengde, Hebei, 067000, China
  • Received:2021-11-24 Online:2023-02-10 Published:2023-04-07

基于网络药理学和分子对接技术研究桑寄生抗炎的作用机制

熊辉1, 李哲1, 于永洲2, 洪霞1, 李娜2   

  1. 1.承德医学院/河北省中药研究与开发重点实验室,河北承德 067000;
    2.承德医学院/河北省神经损伤与修复重点实验室
  • 基金资助:
    国家自然科学基金项目(82104384); 河北省教育厅科学技术研究项目(QN2021008); 承德医学院高层次人才科研启动基金(202106); 中央引导地方科技发展资金项目(216Z2501G); 承德医学院高层次人才科研启动基金(2021003); 河北省高校重点学科建设项目(冀教高[2013]4号)

Abstract: Objective To explore the anti-inflammatory mechanism of loranthus parasiticus based on network pharmacology and molecular docking technology. Methods Active components and targets of loranthus parasiticus were gathered by TCMSP database and screened inflammatory targets by GeneCards, TTD and OMIM database. A “compound-target-disease” network was constructed with Cytoscape3.7.1. Protein interaction networks were mapped using String database and Clusterprofiler R Package was applied to enrich gene ontology GO and KEGG pathways of loranthus parasiticus intervention in inflammation. Molecular docking verification was carried out in AutoDockTools and AutoDockVina, and the results were visualized by PyMOL software. Results Forty-six active components and 418 potential targets of loranthus parasiticus, 696 targets of inflammation and 71 common targets of loranthus parasiticus and inflammation were collected. GO enrichment analysis and KEGG pathway enrichment analysis screened out 1703 items and 139 signaling pathways (P<0.05), mainly involving lipid and atherosclerosis, AGE-RAGE signaling pathway, TNF-α, IL-17 signaling pathway, Toll-like receptor signaling pathway, etc. The molecular docking results showed that quercetin had the strongest binding ability to AKT1. Conclusion Loranthus parasiticus may regulate multiple signaling pathways including IL-6, IL-1β, RelA, MAPK1 and AKT1 through quercetin, oleanolic acid and guajavarin to exert anti-inflammatory effects, providing reference for future studies.

Key words: network pharmacology, loranthus parasiticus, inflammation, molecular docking, function mechanism

摘要: 目的 基于网络药理学与分子对接技术探究桑寄生抗炎的作用机制。方法 通过TCMSP数据库筛选桑寄生的活性成分及作用靶点。采用GeneCards、TTD及OMIM数据库检索炎症相关靶点。通过Cytoscape 3.7.1构建“化合物-靶点-疾病”网络。利用String数据库绘制蛋白互作网络,采用clusterprofiler R package对桑寄生干预炎症进行基因本体GO和KEGG通路富集分析。利用AutoDockTools及AutoDockVina 软件中进行分子对接验证,通过PyMOL软件进行可视化。结果 收集桑寄生46个活性成分、418个潜在作用靶点、696个炎症相关靶点,桑寄生-炎症共同靶点71个;GO及KEGG通路富集分析筛选出1703个条目、139条信号通路(P<0.05),主要涉及脂质和动脉粥样硬化、糖尿病并发症中的AGE-RAGE信号通路、TNF-α、IL-17信号通路、Toll样受体信号通路等。分子对接结果示槲皮素与AKT1结合能力最强。结论 桑寄生可能通过槲皮素、齐墩果酸、扁蓄苷等活性成分作用于IL-6、IL-1β、RelA、MAPK1、AKT1等靶点调节多条信号通路发挥抗炎作用,为后续研究提供参考。

关键词: 网络药理学, 桑寄生, 炎症, 分子对接, 作用机制

CLC Number: