[1] Zhang J, Cheng Y, Gu J, et al.Fenofibrate increases cardiac autophagy via FGF21/SIRT1 and prevents fibrosis and inflammation in the hearts of Type 1 diabetic mice[J]. Clinical Science, 2016, 130(8): 625-641. [2] Cho NH, Shaw JE, Karuranga S, et al.IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045[J]. Diabetes Research and Clinical Practice, 2018, 138: 271-281. [3] Acar E, Ural D, Bildirici U, et al.Diabetic cardiomyopathy[J]. Anadolu Kardiyol Derg, 2011, 11(8): 732-737. [4] Guo R, Liu W, Liu B, et al.SIRT1 suppresses cardiomyocyte apoptosis in diabetic cardiomyopathy: An insight into endoplasmic reticulum stress response mechanism[J]. Int J Cardiol, 2015, 191: 36-45. [5] Duan J, Zhang HY, Adkins SD, et al.Impaired cardiac function and IGF-I response in myocytes from calmodulin-diabetic mice: role of Akt and RhoA[J]. American Journal of Physiology, 2003, 284(2): E366-376. [6] Ren J, Bode AM.Altered cardiac excitation-contraction coupling in ventricular myocytes from spontaneously diabetic BB rats[J]. Am J Physiol Heart Circ Physiol, 2000, 279(1): H238-244. [7] Bugger H, Abel ED.Molecular mechanisms of diabetic cardiomyopathy[J]. Diabetologia, 2014, 57(4): 660-671. [8] Janssen JAMJL, Lamberts SWJ.The role of IGF-I in the development of cardiovascular disease in type 2 diabetes mellitus: is prevention possible?[J]. European Journal of Endocrinology, 2002, 146(4): 467-477. [9] De Meyts P, Whittaker J.Structural biology of insulin and IGF1 receptors: implications for drug design[J]. Nature Reviews Drug Discovery, 2002, 1(10): 769-783. [10] Troncoso R, Ibarra C, Vicencio JM, et al.New insights into IGF-1 signaling in the heart[J]. Trends Endocrinol Metab, 2014, 25(3): 128-137. [11] Ungvari Z, Csiszar A.The emerging role of IGF-1 deficiency in cardiovascular aging: recent advances[J]. J Gerontol A Biol Sci Med Sci, 2012, 67(6): 599-610. [12] Perkel D, Naghi J, Agarwal M, et al.The potential effects of IGF-1 and GH on patients with chronic heart failure[J]. Journal of Cardiovascular Pharmacology and Therapeutics, 2012, 17(1): 72-78. [13] Gonzalez AB, Young L, Doll JA, et al. Elevated neonatal insulin-like growth factor I is associated with fetal hypertrophic cardiomyopathy in diabetic women[J]. American Journal of Obstetrics and Gynecology, 2014, 211(3): 290.e1-7. [14] Hamzawy M, Gouda SAA, Rashid L, et al.The cellular selection between apoptosis and autophagy: roles of vitamin D, glucose and immune response in diabetic nephropathy[J]. Endocrine, 2017, 58(1): 66-80. [15] Pratipanawatr T, Pratipanawatr W, Rosen C, et al.Effect of IGF-I on FFA and glucose metabolism in control and type 2 diabetic subjects[J]. American Journal of Physiology Endocrinology and Metabolism, 2002, 282(6): E1360-1368. [16] Haywood NJ, Slater TA, Matthews CJ, et al.The insulin like growth factor and binding protein family: Novel therapeutic targets in obesity & diabetes[J]. Molecular Metabolism, 2019, 19: 86-96. [17] Fiordaliso F, Li B, Latini R, et al.Myocyte death in streptozotocin-induced diabetes in rats in angiotensin II-dependent[J]. Lab Invest, 2000, 80(4): 513-527. [18] Kajstura J, Fiordaliso F, Andreoli AM, et al.IGF-1 overexpression inhibits the development of diabetic cardiomyopathy and angiotensin II-mediated oxidative stress[J]. Diabetes, 2001, 50(6): 1414-1424. [19] Wang CY, Li XD, Hao ZH, et al.Insulin-like growth factor-1 improves diabetic cardiomyopathy through antioxidative and anti-inflammatory processes along with modulation of Akt/GSK-3β signaling in rats[J]. Korean J Physiol Pharmacol, 2016, 20(6): 613-619. [20] Völkers M, Doroudgar S, Nguyen N, et al.PRAS40 prevents development of diabetic cardiomyopathy and improves hepatic insulin sensitivity in obesity[J]. EMBO Molecular Medicine, 2014, 6(1): 57-65. [21] Yang X, Li X, Lin Q, et al.Up-regulation of microRNA-203 inhibits myocardial fibrosis and oxidative stress in mice with diabetic cardiomyopathy through the inhibition of PI3K/Akt signaling pathway via PIK3CA[J]. Gene, 2019, 715: 143995. [22] Guo CA, Guo S.Insulin receptor substrate signaling controls cardiac energy metabolism and heart failure[J]. The Journal of Endocrinology, 2017, 233(3): R131-R143. [23] Obeng E.Apoptosis (programmed cell death) and its signals-A review[J]. Braz J Biol, 2021, 81(4): 1133-1143. [24] Chen HS, Shan YX, Yang TL, et al.Insulin deficiency downregulated heat shock protein 60 and IGF-1 receptor signaling in diabetic myocardium[J]. Diabetes, 2005, 54(1): 175-181. [25] Huang YT, Liu CH, Yang YC, et al.ROS-and HIF1α-dependent IGFBP3 upregulation blocks IGF1 survival signaling and thereby mediates high-glucose-induced cardiomyocyte apoptosis[J]. Journal of Cellular Physiology, 2019, 234(8): 13557-13570. [26] Shan YX, Yang TL, Mestril R, et al.Hsp10 and Hsp60 suppress ubiquitination of insulin-like growth factor-1 receptor and augment insulin-like growth factor-1 receptor signaling in cardiac muscle: implications on decreased myocardial protection in diabetic cardiomyopathy[J]. The Journal of Biological Chemistry, 2003, 278(46): 45492-45498. [27] Rajpathak SN, Gunter MJ, Wylie-rosett J, et al. The role of insulin-like growth factor-I and its binding proteins in glucose homeostasis and type 2 diabetes[J]. Diabetes Metabolism Research and Reviews, 2009, 25(1): 3-12. [28] Norby FL, Wold LE, Duan J, et al.IGF-I attenuates diabetes-induced cardiac contractile dysfunction in ventricular myocytes[J]. American Journal of Physiology Endocrinology and Metabolism, 2002, 283(4): E658-666. [29] Huynh K, Mcmullen JR, Julius TL, et al.Cardiac-specific IGF-1 receptor transgenic expression protects against cardiac fibrosis and diastolic dysfunction in a mouse model of diabetic cardiomyopathy[J]. Diabetes, 2010, 59(6): 1512-1520. [30] Zhang S, Luan X, Li H, et al.Insulin-like growth factor-1: A potential target for bronchopulmonary dysplasia treatment (Review)[J]. Experimental and Therapeutic Medicine, 2022, 23(3): 191. |