[1] He B, Zhao Z, Cai Q, et al.MiRNA-based biomarkers, therapies, and resistance in Cancer[J]. International Journal of Biological Sciences, 2020, 16(14): 2628-2647. [2] Yu T, Ma P, Wu D, et al.Functions and mechanisms of microRNA-31 in human cancers[J]. Biomedicine Pharmacotherapy Biomedecine Pharmacotherapie, 2018, 108: 1162-1169. [3] 黎爽,彭洪,龚磊,等. miR-31-5p通过VPS53介导的自噬对结直肠癌细胞增殖的影响[J]. 结直肠肛门外科,2021,27(5): 453-459. [4] Liu C, Wu W, Chang W, et al.miR-31-5p-DMD axis as a novel biomarker for predicting the development and prognosis of sporadic early-onet colorectal cancer[J]. Oncology Letters, 2022, 23(5): 157. [5] Mi B, Li Q, Li T, et al.High miR-31-5p expression promotes colon adenocarcinoma progression by targeting TNS1[J]. Aging, 2020, 12(8): 7480-7490. [6] Lai YH, Liu H, Chiang WF, et al.MiR-31-5p-ACOX1 Axis Enhances Tumorigenic Fitness in Oral Squamous Cell Carcinoma Via the Promigratory Prostaglandin E2[J]. Theranostics, 2018, 8(2): 486-504. [7] 景奉洋. MiRNA-31-5p通过调节AK2-AIF信号轴促进口腔癌进展[D]. 合肥:安徽医科大学,2022. [8] Zhao J, Xu H, Duan Z, et al.miR-31-5p Regulates 14-3-3 ɛ to Inhibit Prostate Cancer 22RV1 Cell Survival and Proliferation via PI3K/AKT/Bcl-2 Signaling Pathway[J]. Cancer Management and Research, 2020, 12: 6679-6694. [9] Zhao G, Han C, Zhang Z, et al.Increased expression of microRNA-31-5p inhibits cell proliferation, migration, and invasion via regulating Sp1 transcription factor in HepG2 hepatocellular carcinoma cell line[J]. Biochemical and Biophysical Research Communications, 2017, 490(2): 371-377. [10] Wen J, Xiong K, Aili A, et al.PEX5, a novel target of microRNA-31-5p, increases radioresistance in hepatocellular carcinoma by activating Wnt/β-catenin signaling and homologous recombination[J]. Theranostics, 2020, 10(12): 5322-5340. [11] Shen X, Lei J, Du L. miR-31-5p may enhance the efficacy of chemotherapy with Taxol and cisplatin in TNBC[J]. Experimental and Therapeutic Medicine, 2020, 19(1): 375-383. [12] Li Y, Quan J, Chen F, et al.MiR-31-5p acts as a tumor suppressor in renal cell carcinoma by targeting cyclin-dependent kinase 1 (CDK1)[J]. Biomedicine Pharmacotherapy Biomedecine Pharmacotherapie, 2019, 111: 517-526. [13] He J, He J, Min L, et al.Extracellular vesicles transmitted miR-31-5p promotes sorafenib resistance by targeting MLH1 in renal cell carcinoma[J]. International Journal of Cancer, 2020, 146(4): 1052-1063. [14] Zhu C, Wang S, Zheng M, et al.miR-31-5p modulates cell progression in lung adenocarcinoma through TNS1/p53 axis[J]. Strahlenther Onkol, 2022, 198(3): 304-314. [15] Zhu B, Cao X, Zhang W, et al.MicroRNA-31-5p enhances the Warburg effect via targeting FIH[J]. FASEB J, 2019, 33(1): 545-556. [16] Chi XJ, Wei LL, Bu Q, et al.Identification of high expression profiles of miR-31-5p and its vital role in lung squamous cell carcinoma: a survey based on qRT-PCR and bioinformatics analysis[J]. Translational Cancer Research, 2019, 8(3): 788-801. [17] Davenport ML, Echols JB, Silva AD, et al.miR-31 Displays Subtype Specificity in Lung Cancer[J]. Cancer Research, 2021, 81(8): 1942-1953. [18] Xu H, Ma J, Zheng J, et al.MiR-31 Functions as a Tumor Suppressor in Lung Adenocarcinoma Mainly by Targeting HuR[J]. Clinical Laboratory, 2016, 62(4): 711-718. [19] Yu F, Liang M, Huang Y, et al.Hypoxic tumor-derived exosomal miR-31-5p promotes lung adenocarcinoma metastasis by negatively regulating SATB2-reversed EMT and activating MEK/ERK signaling[J]. J Exp Clin Cancer Res, 2021, 40(1): 179. [20] Ren J.Intermittent hypoxia BMSCs-derived exosomal miR-31-5p promotes lung adenocarcinoma development via WDR5-induced epithelial mesenchymal transition[J]. Sleep Breath,2023,27(4): 1399-1409. [21] Peng H, Wang L, Su Q, et al.MiR-31-5p promotes the cell growth, migration and invasion of colorectal cancer cells by targeting NUMB[J]. Biomedicine Pharmacotherapy Biomedecine Pharmacotherapie, 2019, 109: 208-216. [22] Yuan Y, Wang Z, Chen M, et al.Macrophage-Derived Exosomal miR-31-5p Promotes Oral Squamous Cell Carcinoma Tumourigenesis Through the Large Tumor Suppressor 2-Mediated Hippo Signalling Pathway[J]. Journal of Biomedical Nanotechnology, 2021, 17(5): 822-837. [23] 余杰,王旸,贾彦召,等. miR-31-5p通过调控TNS1抑制乳腺癌细胞生物学行为及放疗抵抗的分子机制[J].中国肿瘤生物治疗杂志,2018,25(10):1013-1020. [24] Luo LJ, Yang F, Ding JJ, et al.MiR-31 inhibits migration and invasion by targeting SATB2 in triple negative breast cancer[J]. Gene, 2016, 594(1): 47-58. [25] Chen Y, Ji S, Ying J, et al.KRT6A expedites bladder cancer progression, regulated by miR-31-5p[J]. Cell Cycle, 2022, 21(14): 1479-1490. [26] 龚年金,李光才,张明华,等. lncRNA MAGI2-AS3下调miR-31-5p抑制肺腺癌细胞的增殖、迁移、侵袭并促进凋亡[J]. 中华细胞与干细胞杂志(电子版),2020,10(4):204-212. [27] Cheng X, Sha M Jiang W, et al. LINC00174 Suppresses Non-Small Cell Lung Cancer Progression by Up-Regulating LATS2 via Sponging miR-31-5p[J]. Cell J, 2022, 24(3): 140-147. [28] Du YL, Liang Y, Shi GQ, et al.LINC00689 participates in proliferation, chemoresistance and metastasis via miR-31-5p/YAP/β-catenin axis in colorectal cancer[J]. Experimental Cell Research, 2020, 395(1): 112176. [29] Jing H, Shi Dai J, Wei Z, et al.Long non-coding RNA LOC554202 promotes acquired gefitinib resistance in non-small cell lung cancer through upregulating miR-31 expression[J]. J Cancer, 2019, 10(24): 6003-6013. [30] Dong L, Ying X, Qi Y, et al.Long Non-Coding RNA TUG1 Promotes Cell Proliferation and Inhibits Cell Apoptosis, Autophagy in Clear Cell Renal Cell Carcinoma via MiR-31-5p/FLOT1 Axis[J]. Onco Targets Ther,2020, 13: 5857-5868. [31] Yi D, Zhang D, He J.Long non-coding RNA LIFR-AS1 suppressed the proliferation, angiogenesis, migration and invasion of papillary thyroid cancer cells via the miR-31-5p/SIDT2 axis[J]. Cell Cycle, 2021, 20(24): 2619-2637. [32] Wang J, Jia J, Zhou L.Long non-coding RNA CASC2 enhances cisplatin sensitivity in oral squamous cell cancer cells by the miR-31-5p/KANK1 axis[J]. Neoplasma, 2020,67(6): 1279-1292. [33] Zhang W, Zhou X, Tang Z, et al.Knockdown of lncRNA SNHG16 Attenuates the Proliferation and Radioresistance of Nasopharyngeal Carcinoma Cells by Mediating miR-31-5p/SFN Axis[J]. Radiation Research, 2022, 199(2): 124-131. [34] Alkan AH, Akgül B.Endogenous miRNA Sponges[J]. Methods in Molecular Biology, 2022, 2257: 91-104. [35] Dykes IM, Emanueli C.Transcriptional and Post-transcriptional Gene Regulation by Long Non-coding RNA[J]. Genomics, Proteomics Bioinformatics, 2017, 15(3): 177-186. [36] Bi J, Liu H, Cai Z, et al.Circ-BPTF promotes bladder cancer progression and recurrence through the miR-31-5p/RAB27A axis[J]. Aging, 2018, 10(8): 1964-1976. [37] Liu Z, Wang R, Zhu G.Circ-0035483 Functions as a Tumor Promoter in Renal Cell Carcinoma via the miR-31-5p-Mediated HMGA1 Upregulation[J]. Cancer Management and Research, 2021, 13: 693-706. [38] Ren TJ, Liu C, Hou JF, et al.CircDDX17 reduces 5-fluorouracil resistance and hinders tumorigenesis in colorectal cancer by regulating miR-31-5p/KANK1 axis[J]. European Review for Medical and Pharmacological Sciences, 2020, 24(4): 1743-1754. [39] Wu D, Chen T, Zhao X, et al.HIF1α-SP1 interaction disrupts the circ-0001875/miR-31-5p/SP1 regulatory loop under a hypoxic microenvironment and promotes non-small cell lung cancer progression[J]. J Exp Clin Cancer Res, 2022, 41(1): 156. [40] Scholtz B, Horváth J, Tar I, et al.Salivary miR-31-5p, miR-345-3p, and miR-424-3p Are Reliable Biomarkers in Patients with Oral Squamous Cell Carcinoma[J]. Pathogens, 2022, 11(2): 229. [41] Kubota N, Taniguchi F, Nyuya A, et al.Upregulation of microRNA-31 is associated with poor prognosis in patients with advanced colorectal cancer[J]. Oncology Letters, 2020, 19(4): 2685-2694. [42] Kiss I, Mlcochova J, Bortlicek Z, et al.Efficacy and Toxicity of Panitumumab After Progression on Cetuximab and Predictive Value of MiR-31-5p in Metastatic Wild-type KRAS Colorectal Cancer Patients[J]. Anticancer Research, 2016, 36(9): 4955-4959. [43] Yi SJ, Liu P, Chen BL, et al.Circulating miR-31-5p may be a potential diagnostic biomarker in nasopharyngeal carcinoma[J]. Neoplasma, 2019, 66(5): 825-829. [44] Cao H, Zhang P, Yu H, et al.Extracellular Vesicles-Encapsulated miR-153-3p Potentiate the Survival and Invasion of Lung Adenocarcinoma[J]. Molecules and Cells, 2022, 45(6): 376-387. |