[1] Wang Y, Yan Q, Fan C, et al.Overview and countermeasures of cancer burden in China[J]. Sci China Life Sci, 2023, 66(11): 2515-2526. [2] Zhou Y, Song K, Chen Y, et al.Burden of six major types of digestive system cancers globally and in China[J]. Chin Med J (Engl), 2024, 137(16): 1957-1964. [3] de Visser KE, Joyce JA. The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth[J]. Cancer Cell, 2023, 41(3): 374-403. [4] Lv B, Wang Y, Ma D, et al.Immunotherapy: Reshape the Tumor Immune Microenvironment[J]. Front Immunol, 2022, 13: 844142. [5] Liu Y, Zhang Q, Xing B, et al.Immune phenotypic linkage between colorectal cancer and liver metastasis[J]. Cancer Cell, 2022, 40(4): 424-437. [6] Davern M, Donlon NE, Power R, et al.The tumour immune microenvironment in oesophageal cancer[J]. Br J Cancer, 2021, 125(4): 479-494. [7] Lei X, Lei Y, Li JK, et al.Immune cells within the tumor microenvironment: Biological functions and roles in cancer immunotherapy[J]. Cancer Lett, 2020, 470: 126-133. [8] Xiang Y, Zhu L, He Z, et al.EID3 Promotes Glioma Cell Proliferation and Survival by Inactivating AMPKα1[J]. J Korean Neurosurg Soc, 2022, 65(6): 790-800. [9] Wang Y, Luo S, Wang Y, et al.EID3 Promotes Cancer Stem Cell-Like Phenotypes in Osteosarcoma through the Activation of PI3K-AKT Signaling Pathway[J]. Oxid Med Cell Longev, 2022, 2022: 5941562. [10] Zhu Y, Wang Z, Li Y, et al.The Role of CREBBP/EP300 and Its Therapeutic Implications in Hematological Malignancies[J]. Cancers (Basel), 2023, 15(4): 1219. [11] Hudson JJ, Bednarova K, Kozakova L, et al.Interactions between the Nse3 and Nse4 components of the SMC5-6 complex identify evolutionarily conserved interactions between MAGE and EID Families[J]. PLoS One, 2011, 6(2): e17270. [12] Sasajima Y, Tanaka H, Miyake S, et al.A novel EID family member, EID-3, inhibits differentiation and forms a homodimer or heterodimer with EID-2[J]. Biochem Biophys Res Commun, 2005, 333(3): 969-975. [13] Li T, Fu J, Zeng Z, et al.TIMER2.0 for analysis of tumor-infiltrating immune cells[J]. Nucleic Acids Res, 2020, 48(W1): W509-W514. [14] Li Y, Yang T, Lai T, et al.CDCP: a visualization and analyzing platform for single-cell datasets[J]. J Genet Genomics, 2022, 49(7): 689-692. [15] Yang S, Kim CY, Hwang S, et al.COEXPEDIA: exploring biomedical hypotheses via co-expressions associated with medical subject headings (MeSH)[J]. Nucleic Acids Res, 2017, 45(D1): D389-D396. [16] Schmitt M, Greten FR.The inflammatory pathogenesis of colorectal cancer[J]. Nat Rev Immunol, 2021, 21(10): 653-667. [17] Al Zein M, Boukhdoud M, Shammaa H, et al.Immunotherapy and immunoevasion of colorectal cancer[J]. Drug Discov Today, 2023, 28(9): 103669. [18] Zhang W, Wang M, Ji C, et al.Macrophage polarization in the tumor microenvironment: Emerging roles and therapeutic potentials[J]. Biomed Pharmacother, 2024, 177: 116930. [19] Fu LQ, Du WL, Cai MH, et al.The roles of tumor-associated macrophages in tumor angiogenesis and metastasis[J]. Cell Immunol, 2020, 353: 104119. [20] Ge W, Wu W.Influencing Factors and Significance of Tumor-associated Macrophage Polarization in Tumor Microenvironment[J]. Zhongguo Fei Ai Za Zhi, 2023, 26(3): 228-237. [21] Wang H, Tian T, Zhang J. Tumor-Associated Macrophages (TAMs) in Colorectal Cancer (CRC): From Mechanism to Therapy and Prognosis[J]. Int J Mol Sci, 2021, 22(16): 8470. [22] Dong C, Hui P, Wu Z, et al.CircRNA LOC729852 promotes bladder cancer progression by regulating macrophage polarization and recruitment via the miR-769-5p/IL-10 axis[J]. J Cell Mol Med, 2024, 28(7): e18225. [23] Zhou L, Li J, Liao M, et al.LncRNA MIR155HG induces M2 macrophage polarization and drug resistance of colorectal cancer cells by regulating ANXA2[J]. Cancer Immunol Immunother, 2022, 71(5): 1075-1091. |